قطعه ی بسیار مهمی است که در بیشتر مدارها (مانند مدارهای صوتی ، تقویت کننده ها و ...) استفاده می شود و همچنین می توان به عنوان کلید از آن استفاده کرد. در شکل زیر تعدادی ترانزیستور مشاهده می کنید.

 

ترانزیستور در سال 1948 ساخته شد (توسط جان باردین، والتر براتین و ویلیام شاکلی) که نامش از ادغام دو کلمه ی Transfer(حمل و نقل) و ) Resistor مقاومت) گرفته شده است. در 23 سپتامبر 1947 جان باردین (John Braden)، والتر براتین (Walter Britain) و ویلیام شاکلی(William Shockley) برای اوّلین بار نشان دادند که قطعه ای نیم رسانا به نام ترانزیستور می تواند خاصیت تقویت کنندگی داشته باشد. البته این قطعه مشکلاتی هم داشت که قابل پیش بینی نبود. شاکلی به تحقیقات خود ادامه داد و در سال 1951 اوّلین ترانزیستور پیوندی قابل اطمینان خود را به جهان عرضه کرد و در سال 1956 هر سه نفر آنها به طور مشترک جایزه ی نوبل در فیزیک را به خاطر کشف خود گرفتند و در سال 1972 باردین موفّق شد دومین جایزه ی نوبل را به خاطر تحقیق بر روی ابر رسانایی دریافت کند. شاکلی در سال 1955 آزمایشگاه های بل را ترک کرد تا شرکت خود را در زمینه ی نیمه رساناها در نزدیکی خانه اش در پالتو آلتو راه اندازی کند، لذا شروع به استخدام افراد کرد. البته او در استخدام افراد بسیار سختگیر بود و تنها افراد جوان، پرشور و با استعداد را استخدام می کرد. شرکت در مسیر موفّقیت گام بر می داشت ولی اکثر کارکنان آن نمی توانستند رفتار نا متعارف شاکلی را در مورد پرداخت حقوق تحمّل کنند. دو سال بعد، هشت تن از زبده ترین کارمندان شاکلی شرکت وی را ترک کردند. این هشت تن که شاکلی آنها را هشت خائن می نامید، شرکتی به نام فیر چایلد (Fairchild) را تأسیس کردند که تنها چند ساختمان دورتر از آن شرکت بود. بنیان گذاران فیر چایلد بیش از پنجاه شرکت دیگر تأسیس کردند. یکی از بزرگترین آنها را رابرت نویس (Robert Nonce) و دو نفر از گروه هشت نفری فیر چایلد راه اندازی کردند. آنها نام این شرکت را اینتل (Intel مخفف Intelligence است) گذاشتند.


نکته: در تمام نقشه های شماتیک ترانزیستور را با نام Tr یا T و یا Q نمایش می دهند.

ترانزیستورها انواع مختلفی از نظر نوع و کارکرد دارند. از معمول ترین ترانزیستورها از نظر کارکرد می توان به ترانزیستور های قدرت، ترانزیستورهای صوتی، ترانزیستورهای دارلینگتون، ترانزیستورهای فرکانس متوسط، ترانزیستورهای بَی دَیرِکشنال (Bay Directional یا همان ترانزیستورهای دوجهتی)، ترانزیستورهای ولتاژ بالا، ترانزیستورهای سوئیچی (کلیدی) و بسیاری دیگر اشاره کرد.


نکته: ترانزیستورهای قدرت همانطور که از نامشان پیداست برای کار در جریانهای زیاد طراحی شده اند و به شدت داغ می شوند و برای جلوگیری از بیشتر داغ شدن آنها، آنها را روی خنک کننده (Heat sink های آلومینیومی که نمونه ی آنها را در داخل کامپیوتر و روی CPU می توانید مشاهده کنید) نصب می کنند. این ترنزیستورها بزرگ هستند و جریانی از 1 آمپر و گاهی تا 100 آمپر را از خود عبور می دهند.


سؤال: رادیاتور در ترانزیستور چیست؟

رادیاتور همان خنک کننده است که گرمای ترانزیستورهای قدرت را منتقل می کند. به خنک کننده هیت سینک (Heat Sink) می گویند. ترانزیستورهای قدرت معمولاً بدنه کاملاً فلزی و یا نیمه فلزی دارند تا بتوانند گرما را به خوبی منتقل کنند (به هیت سینک).


انواع ترانزیستورها از نظر نوع:

1) ترانزیستورهای تک قطبی:

این نوع ترانزیستورها از سه پایه ی امیتر (Emitter)، بیس 1 (Base 1) و بیس 2 تشکیل شده است که به آن ترانزیستور تک پیوندی یا دیود با بیس دوتایی می گویند. ترانزیستور 2N2646 نمونه ای از این ترانزیستورها است.


2) تراتزیستورهای دوقطبی (BJT=Bipolar Junction Transistor):

این نوع ترانزیستور ها از سه پایه به نام های: 1) امیتر (Emitter)، 2) کلکتور (Collector) و 3) بیس (Base) تشکیل شده اند که در نقشه های شماتیک پایه ی امیتر را با حرف E، پایه ی کلکتور را با حرف C و پایه ی بیس را با حرف B نشان می دهند. این ترانزیستور دارای دو نوع مثبت (PNP) و منفی (NPN) می باشد و نوع منفی آن را در نقشه های شماتیک با نماد  نمایش می دهند و نوع مثبت آن را با نماد  نمایش می دهند.


نکته: ترانزیستور BJTالمانی تمام کنترل شده می باشد به این صورت که با جریان بیس خاموش و روشن می شود و در ترانزیستور NPN اگر جریان مثبتی را توسط ولتاژ بیس مثبت به ترانزیستور اعمال کنیم، در این صورت از کلکتور به امیتر این ترانزیستور جریان زیادی می گذرد که مقدار آن به ضریب تقویت ترانزیستور (hFE یا همان ß) بستگی دارد؛ مثلاٌ اگر جریان 10µA را به بیس ترانزیستور NPN وارد کنیم، در صورتی که ضریب تقویت ترانزیستور 1000 باشد، از کلکتور به امیتر این ترانزیستور جریان زیادی به اندازه ی 1000 برابر جریان بیس (به اندازه ی hFEبرابر جریان بیس) جاری خواهد شد. اگر در ترانزیستور NPNجریان از بیس بکشیم، ترانزیستور خاموش می شود. در ترانزیستور PNP اگر جریان از بیس بکشیم (توسط اعمال ولتاژ منفی به پایه ی بیس)، از امیتر به کلکتور آن جریان زیادی به اندازه ی hFEبرابر جریان بیس جاری خواهد شد. ترانزیستور PNP عکس ترانزیستور NPN عمل می کند.


نکته: هنگام روشن شدن ترانزیستور می گوییم که ترانزیستور به حالت هدایت رفته است (یعنی از خود جریان عبور می دهد).


نکته: در ترانزیستور NPN، جریان بسیار کمی در حد چند میکرو آمپر از پایه ی امیتر (E) به سمت کلکتور (C) جاری می شود که مقدار آن به دما و ولتاژ ترانزیستور بستگی دارد که به این جریان، جریان اشباع معکوس می گویند.در ترانزیستور PNP نیز این جریان از پایه ی C به پایه ی E جاری می شود که به این جریان نیز جریان اشباع معکوس می گویند.


نکته: در داخل ترانزیستورهای دارلینگتون دو ترانزیستور BJT قرار دارد و این ترانزیستورها دو نوع NPN و PNP دارند که نوع PNP آن را با  نمایش داده و نوع NPN آن را با  نمایش می دهند.


3) ترانزیستور های اثر میدانی (FET=Field-Effect Transistor):

عملکرد این ترانزیستور با ترانزیستور BJTکاملاً متفاوت است

این ترانزیستور از دو نوع n-کانال و p-کانال تشکیل شده است.

بعضی از ترانزیستور های اثر میدانی (FET ها) دارای سه پایه و برخی دیگر دارای چهار پایه می باشند.


نکته: ترانزیستور های FET هم المانهای تمام کنترل شده می باشند به این صورت که روشن و خاموش شدن آنها به ولتاژ گیت-سورس (VGS) انجام می شود. در FET های n-کانال اگر ولتاژ گیت نسبت به سورس بیشتر شود(VGS>0)، ترانزیستور روشن می شود و در غیر این صورت ترانزیستور خاموش خواهد ماند و در FET p-کانال این قضیه برعکس می باشد.


در FET های سه پایه، این سه پایه عبارتند از:

1) گیت (Gate)، 2) درین (ِDrain) و 3) سورس (Source)

و پایه ی گیت را با حرف G، پایه ی درین را با حرف D و پایه ی سورس را با حرف S نشان می دهند.

نوع منفی FET های سه پایه منفی را با  نمایش داده و نوع مثبت آن را با  نمایش می دهند.

در FET های چهار پایه علاوه برسه پایه ی بالا یک پایه ی بیس نیز وجود دارد و آن را با حرف B نشان می دهند.

FET های چهار پایه نیز از دو نوع n-کانال و p-کانال تشکیل شده اند و دارای دو مد تهی و افزایشی می باشند که در مد تهی، نوع n را با  نمایش می دهند و نوع p را با  نمایش می دهند و در مد افزایشی نوع n را با  نمایش می دهند و نوع p را با  نمایش می دهند.


تشخیص پایه های ترانزیستور:

معمولاً در هر ترانزیستور ترتیب چیدمان پایه های ترانزیستور، در هر ترانزیستور فرق دارد و باید با توجّه به عکس های راهنما این پایه ها را از هم تشخیص داد. مثلاً ترانزیستور C1959 را در نظر می گیریم و ترتیب پایه های آن به صورت  می باشد. (برای تشخیص درست پایه های هر ترانزیستور به کتابهایی با نام کلی مشابهات ترانزیستورها مراجعه کنید. در این کتب ترتیب چیدمان پایه های ترانزستورها مشخص شده است).


نکته: ترانزیستور BJT سرعت قطع و وصل (خاموش و روشن شدن) کمتری نسبت به ترانزیستور FET دارد زیرا ترانزیستور BJT با جریان فرمان می گیرد (یعنی با جریان خاموش و روشن می شود) در حالی که ترانزیستور FET با ولتاژ خاموش و روشن می شود و چون BJT با جریان فرمان می گیرد، باعث ایجاد تلفات در ترانزیستور می گردد ولی در ترانزیستور FETتلفات نداریم.


نکته: عیب ترانزیستور FET این است که جریان عبوری از آن (جریان عبوری از درین-سورس) کم است بنابراین دانشمندان سعی کردند تا ترانزیستور دیگری بسازند که هم جریان عبوری آن مانند BJT زیاد باشد و هم سرعت قطع و وصل آن مانند FET زیاد باشد بنابراین IGBT که ترکیبی از BJT و FET می باشد و فناوری پیشرفته تری نسبت به BJT و FET دارد ساخته شد البته قیمت IGBT بسیار بیشتر از BJT می باشد (در حدود 3 برابر).


3) تریستور (Thyristor):

این قطعه از وصل شدن چهار نیمه هادی (دو نیمه هادی مثبت و دو نیمه هادی منفی) تشکیل شده است که دارای دو یا سه یا چهار پایه می باشد. کاربرد این قطعه در قطعات سوئیچینگ وکنترل توان است.


تریستور دو پایه: به این نوع از تریستور، تریستور بدون گیت یا تریستور دیود می گویند که ساده ترین نوع تریستور است که از دو پایه ی آند و کاتد تشکیل شده است تریستور دو پایه دوجهته را با  نمایش می دهند و تریستور دو پایه ی یک جهته را با  نمایش می دهند.


تریستور سه پایه (یا SCR سه پایه): این تریستور که به آن تریستور تریود می گویند از سه پایه به نام های آند، کاتد و گیت تشکیل شده است و اگر در پایه ی گیت پالسی با جریان 100mAو پنج ولت وجود داشته باشد، تریستور روشن می شود. تریستور می تواند جریان 250A را در ولتاژ 250V تحمّل کند و افت ولتاژ در دو سر تریستور در این حالت به حدود 2V می رسد.


نکته: اگر به گیت تریستور جریان ندهیم، برای روشن شدن تریستور می بایست ولتاژ را بسیار زیاد کنیم که در این صورت احتمال صدمه دیدن تریستور زیاد می شود.

 

تریستورهای جدید سه پایه می توانند جریانی در حدود 1000Aو ولتاژی در حدود2.5KV را تحمّل کنند و به همین دلیل در کنترل آسانسورها و... کاربرد دارند.

تریستور سه پایه را با  نمایش می دهند.


تریستور چهار پایه: 

این نوع تریستور دارای چهار پایه ی آند، کاتد، گیتn و گیتp می باشد و با اعمال سیگنال مثبت به گیتp یا سیگنال منفی به گیتn می توان تریستور را به حالت هدایت برد. خاصیت دیگر تریستور چهار پایه این است که با اعمال سیگنال منفی به گیتp یا اعمال سیگنال مثبت به گیتn می توان تریستور را به وضعیت خاموش برد. تریستور چهار پایه را سوئیچ کنترل شده ی سیلیکونی می گویند.

تریستور چهار پایه را با  نمایش می دهند.

 

نکته: اگر جریان زیادی به گیت تریستور اعمال کنیم، تریستور می سوزد.


نکته: تریستور المانی نیمه کنترل شده می باشد به این صورت که روشن شدن آن با جریان دادن به گیت انجام می شود ولی تریستور وقتی خاموش می شود که جریان عبوری از آن کمتر از جریان نگه دارنده (یعنی حداقل جریانی که لازم است از تریستور عبور کند تا تریستور روشن بماند) کمتر شود. جریان نگه دارنده در حد mA می باشد. تریستور چون با جریان فرمان می گیرد سرعت قطع و وصل آن کاهش می یابد.


4) ترایاک(Traic):

نوع پیشرفته تر تریستور، ترایاک می باشد یعنی ترایاک از خانواده ی تریستورها محسوب می شود. این قطعه نیز از سه پایه تشکیل شده است و می تواند ولتاژ را به صورت دو طرفه هدایت کند.

پایه ی اوّل ولتاژ اصلی آن MT1، پایه ی دوم ولتاژ اصلی آن MT2 و پایه ی گیت، سه پایه ی ترایاک هستند. چه ولتاژ اعمال شده به MT2 نسبت به MT1 مثبت باشد و چه منفی، می توان پالس های تحریک شده ی مثبت یا منفی را به گیت ترایاک نسبت به MT1 اعمال کرد. بنابراین ترایاک برای کنترل تمام موج ACمناسب بوده و ترایاک را نیز می توان مانند تریستور در مدارات AC به کار برد. ترایاک را با  نمایش می دهند.